

Inter- and intraindividual variations of methylphenidate in serum and oral fluid of ADHD patients

Sophie Studer¹, Joschua Preiskorn¹, Richard Lukačin², Christoph Geffert³, Christian Fleischhaker¹, Hans-Willi Clement¹, Eberhard Schulz¹

¹Dept. of child and adolescent psychiatry, psychotherapy and psychosomatics, University Hospital Freiburg, Germany ²Chromsystems Instrument & Chemicals GmbH Munich, Germany, ³ Dr. Staber & Kollegen, Klipphausen, Germany

Objective

therapy of attention hyperactivity disorder methylphenidate represents nowadays first line treatment in combination with psychotherapy. It is one of the bestpediatric psychopharmacological drugs with a long clinical experience time. Since methylphenidate has addiction potential and shows different metabolic characteristics in children, therapeutic drug monitoring is advised, but not being applied in daily clinical practice [1]. Similar conditions concerning metabolic properties can be found in patients with hepatic or renal insufficiency, these would benefit as well from a less invasive and painful sampling. To avoid burdening invasive blood collection, oral fluid may be a noninvasive. simple and cost-effective alternative laboratory matrix. However, in pediatric drug therapy, there are only few reliable studies about the inter- and intraindividual pharmacodynamics of methylphenidate in oral fluid. In this study we quantified methylphenidate and its metabolite ritalinic acid from saliva with mass spectrometry.

Methods

From 40 ADHD patients (27 children, 2 adolescents and 11 adults) taking methylphenidate, serum and oral fluid were obtained. Methylphenidate and its major metabolite ritalinic acid were quantified LC-MS/MS using measurements. Sample preparation was performed using the Chromsystems TDM Parameter Antidepressants 2/Psychostimulants-kit. The blood and saliva samples were taken as possible two to three hours drug intake, when highest concentrations can be expected both in serum and oral fluid. [2] From 15 of these patients, 10 oral fluid samples were obtained about 2 hours after intake different days to intraindividual variance. participants took predominantly longacting sustained-release like Medikinet retard® or Ritalin LA®. The daily intake ranged between 10 and 60 mg MPH, corresponding to a dosage of 0.1 to 1.4 mg per kilogram of body weight.

Literature

[1] van den Anker JN, Schwab M, Kearns GL, (2011) Developmental pharmacokinetics. Handbook of experimental pharmacology **205**: 51-75.

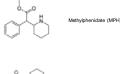
[2] Marchei E, Farrè M, Pellegrini M, Rossi S, García-Algar Ó, Vall O. Pacifici R. Pichini S. (2010) Pharmacokinetics of methylphenidate in oral fluid and sweat of a pediatric subject. Forensic Science International 196(1-3): 59-63.

[3] Novartis Pharma. (2013) Fachinformation Ritalin® 10mg Filmtabletten

[4] Marchei E. Farrè M. Garcia-Algar O. Pardo R. Pellegrini [4] Matchet E, Faire M, Oarcia-Arigai O, Faido K, Feingini M. (2010) Correlation between methylphenidate and ritalinic acid concentrations in oral fluid and plasma. *Clinical Chemistry* 56(4): 585-92.

[5] Stegmann B, Dorfelt A, Haen, E. (2015): Quantification of Methylphenidate, Dexamphetamine and Atomoxetine in Human Serum and Oral Fluid by HPLC with Fluorescence Detection. In: Therapeutic drug monitoring. 38(1):98-107.

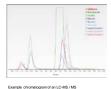
Results

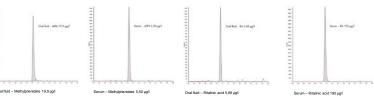

Study populations

Patients	interindividual 19	intraindiviual 21
Kids (8-12 years) Adolescent (13-18	9 1	18 1
years) Adults (>18 years)	9	2
Age (years) mean ± SD (min.; max.)	19,4 ± 13 (8; 48)	12,5 ± 10,8 (7; 54)
Female Male	6 13	3 18
Height (cm) mean ± SD (min.; max.)	155,6 ± 19,3 (133; 193)	140,2 ± 14,6 (122; 175)
Weight (kg) mean ± SD (min.; max.)	55,54 ± 25,28 (26,2 ; 105)	35,6 ± 14,1 (20,9 ; 71,7)
BMI (kg/m2) mean ± SD (min.; max.)	21,7 ± 6 (14,2; 36,3)	17,5 ± 3,4 (13,4 ; 25,6)

Dose rate and serum/saliva concentration

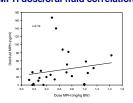
Dose rate per day (mg), mean ± SD (min.;max.)	interindividual 30,4 ± 12,1 (10 ; 60)	intraindiviual 33,6 ± 13,4 (15 ; 60)
Dose rate/ kg BW (mg/kg BW), mean ± SD (min.;max.)	0,6 ± 0,4 (0,1; 1,4)	1,1 ± 0,4 (0,3 ; 1,8)
Serum concentration MPH (ng/ml), mean ± SD (min.;max.)	10,9 ± 9,8 (0,6; 35,3)	16,4 ± 7,6 (9,1;31)
Oral fluid concentration MPH(ng/ml), mean ± SD (min.,max.)	41.8 ± 42.6 (1.2 : 167.2)	80,3 ± 18 (1,7; 216,5)
Oral fluid/serum ratio MPH Mean ± SD (min.;max.)	5,1 ± 4,9 (1,4; 20,6)	4,6 ± 2,4 (1,8; 9,3)


Chemical structures

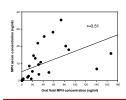


Example chromatogram

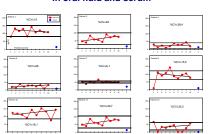
LC-MS/MS measurement

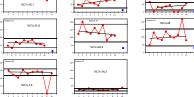


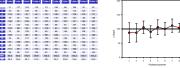
Serum and oral fluid chromatograms of a patient taking methylphenidate

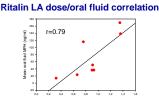


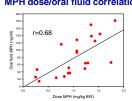
MPH dose/serum correlation

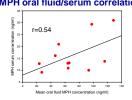

MPH dose/oral fluid correlation




MPH oral fluid/serum correlation


Intraindividual MPH concentrations in oral fluid and serum




Intraindividual z-Transformation of oral fluid MPH-concentrations in children (means ± SD).

MPH dose/oral fluid correlation

MPH oral fluid/serum correlation

Conclusion

- The LC-MS/MS kit "MassTox TDM Parameter Set Antidepressants 2/Psychostimulants" is suitable and reliable for the determination of methylphenidate and ritalinic acid in oral fluid.
- The measured serum concentration values for methylphenidate correspond to the previously published data. [3]
- Oral fluid methylphenidate concentrations were about 5 times higher than in serum, while the concentrations of ritalinic acid were significantly lower in oral fluid.
- Correlations between serum and saliva concentrations for MPH described by Marchei et al. range between r=0.22 (fast-release formulation) and r=0.79 (extended-release formulation). Our result with r=0.51 for MPH is precisely in between, for Ritalin LA comparable. Probably fast-releasing pharmaceutical formulations cause buccal contamination and falses the oral fluid concentration. [4]
- Taken together oral fluid seems to be a valid matrix for TDM of MPH in children with ADHD.